Arterial Elasticity in Healthy Chinese

A multi-center collaborative project for the establishment of normal reference values of arterial elasticity in healthy Chinese. Measurement of the common carotid artery Elasticity in Healthy Chinese Using the eTRACKING Technology.

eTRACKING (Echo Tracking) technology, which automatically tracks vessel wall motion and measures vessel diameter, provides accurate evaluation of vascular elasticity for early diagnosis of atherosclerosis before changes in vessel wall structure or shape occur.
38 hospitals in China have committed to participating in a multi-centre collaborative project for the establishment of normal reference values of arterial elasticity in healthy Chinese.
The elasticity of bilateral common carotid artery was measured in 4,812 participants.
The obtained reference values will be of noticeable significance in the prevention of atherosclerosis, early discovery of arterial lesions and assessment of drug efficacy.

Subject
A group of 4,812 healthy Chinese subjects were enrolled in the study including 1,971 men and 2,841 women aged 5-80 years with a mean age of 33.7±10.8 years from extensive geographical coverage. Measurements of the elasticity of their common carotid arteries were made. All the subjects included were healthy Chinese non-smokers with no symptoms of valvular heart disease or arrhythmia, no abnormalities in blood lipid, glucose levels and blood pressure, and no ultra-sonographic evidence of plaque in the right subclavian artery and the common carotid artery nor increased intima-media thickness (IMT) of the carotid bifurcation (IMT ≤ 0.12 cm) or the common carotid artery (IMT ≤ 0.1 cm).

Equipment
The ProSound α 10 or ProSound SSD-5500 with eTRACKING technology was used to track the vessel wall motion and automatically construct the diameter change curve in real time.
Method

- Subjects were requested to avoid heavy tea or coffee.
- Examination room: noiseless and appropriate room temperature (20-23°C).

(1) The subjects were lying flat with ECG leads attached to the body. Three measurements of the blood pressure were made with 15-minute intervals, and the mean value was documented.

(2) Long axis view of the bilateral common carotid artery were displayed by a high-frequency (13MHz) linear array probe and measured change of vessel diameter by eTRACKING.

(3) The sampling sites of eTRACKING was 2.0 cm below the inferior border of the bilateral carotid sinus.

(4) The sampling gate was set to present the media-adventitia layers of both anterior and posterior walls.

(5) The subjects might have to hold their breath, if necessary, to ensure a smooth curve of the diameter changes without significant drift. At least six waveforms were acquired and five or more were analyzed.

Parameters

The five physiological parameters analyzed in the study were the stiffness (\(\beta \)), elastic modulus (Ep), arterial compliance (AC), augmentation index (AI) and pulse wave velocity (PWV \(\beta \)) of the common carotid artery.

Statistical Analysis

Data processing was done by SPSS12.0. Mean ± standard deviation was used for measurement data. Analysis of variance was made on multi-group measurement data and t-test was made on two-group data. Linear analysis was conducted to determine the correlation between different groups. \(P < 0.05 \) was considered to be statistically significant.
Result

A total of 4,812 healthy Chinese were included in the analysis, and the normal reference values of arterial elasticity in seven age groups (<10 years, 10~19 years, 20~29 years, 30~39 years, 40~49 years, 50~59 years and ≥60 years) were obtained.

Normal values of arterial elasticity in healthy Chinese and their changing trends

β, Ep, PWV β and AI of the common carotid artery were increasing with aging in healthy Chinese, healthy men and healthy women of each age group, while AC was contrastingly decreasing with their aging (both P < 0.05). Correlation analysis revealed the best correlation between four indicators, β, Ep, PWV β and AC, of the elasticity of the carotid artery in each age group, whereas AI had relatively poor correlation with the other indicators. In addition, substantial standard deviation of AI was noticed, as well as its inconsistency with the changing trends of other indicators, in each age group. Possible explanations include potential sampling error due to inconsistent sample sizes across age groups and excessive dependence of AI values upon high resolution and stability of tracking curves. Findings of many domestic studies have also indicated that further studies are needed to determine the practical value of AI.

To sum up, β, Ep, PWV β and AC of the common carotid artery can serve as sensitive and reliable indicators of arterial elasticity; nonetheless AI is neither as sensitive nor as reliable as these indicators, and the determination of its practical value requires further studies.
Reference Value of the Elasticity in Healthy Chinese

Left Carotid Artery in 4,812 subjects (1,971 Men and 2,841 Women) by Different Age Groups (X±S)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>n</th>
<th>β</th>
<th>Ep</th>
<th>AC</th>
<th>PWVβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>82</td>
<td>3.00±1.06</td>
<td>27.24±9.18</td>
<td>2.09±0.69</td>
<td>3.22±0.47</td>
</tr>
<tr>
<td>10–19</td>
<td>200</td>
<td>4.05±1.48</td>
<td>44.23±16.28</td>
<td>1.51±0.56</td>
<td>4.17±2.79</td>
</tr>
<tr>
<td>20–29</td>
<td>1525</td>
<td>5.32±1.49</td>
<td>63.27±18.66</td>
<td>1.18±0.38</td>
<td>4.80±0.65</td>
</tr>
<tr>
<td>30–39</td>
<td>1635</td>
<td>6.55±2.00</td>
<td>79.24±25.89</td>
<td>0.95±0.36</td>
<td>5.42±2.02</td>
</tr>
<tr>
<td>40–49</td>
<td>971</td>
<td>7.95±2.59</td>
<td>98.37±33.90</td>
<td>0.80±0.30</td>
<td>6.04±1.98</td>
</tr>
<tr>
<td>50–59</td>
<td>327</td>
<td>9.64±3.19</td>
<td>121.65±43.33</td>
<td>0.71±0.29</td>
<td>6.86±3.03</td>
</tr>
<tr>
<td>≥ 60</td>
<td>72</td>
<td>10.71±3.93</td>
<td>136.58±49.48</td>
<td>0.73±0.30</td>
<td>6.99±1.42</td>
</tr>
</tbody>
</table>

Left Carotid Artery in 1,971 Men by Different Age Groups (X±S)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>n</th>
<th>β</th>
<th>Ep</th>
<th>AC</th>
<th>PWVβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>51</td>
<td>3.18±1.17</td>
<td>28.63±9.73</td>
<td>2.10±0.78</td>
<td>3.29±0.49</td>
</tr>
<tr>
<td>10–19</td>
<td>103</td>
<td>3.98±1.33</td>
<td>44.04±17.17</td>
<td>1.59±0.61</td>
<td>4.29±3.81</td>
</tr>
<tr>
<td>20–29</td>
<td>732</td>
<td>5.26±1.44</td>
<td>64.97±18.65</td>
<td>1.21±0.39</td>
<td>4.84±0.65</td>
</tr>
<tr>
<td>30–39</td>
<td>593</td>
<td>6.47±1.79</td>
<td>81.51±24.19</td>
<td>0.98±0.38</td>
<td>5.53±2.33</td>
</tr>
<tr>
<td>40–49</td>
<td>320</td>
<td>8.16±2.67</td>
<td>103.83±35.75</td>
<td>0.82±0.31</td>
<td>6.14±1.06</td>
</tr>
<tr>
<td>50–59</td>
<td>122</td>
<td>9.41±2.92</td>
<td>121.42±41.18</td>
<td>0.72±0.29</td>
<td>7.17±4.73</td>
</tr>
<tr>
<td>≥ 60</td>
<td>50</td>
<td>10.23±3.40</td>
<td>134.10±47.10</td>
<td>0.79±0.31</td>
<td>6.84±1.41</td>
</tr>
</tbody>
</table>

Left Carotid Artery in 2,841 Women by Different Age Groups (X±S)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>n</th>
<th>β</th>
<th>Ep</th>
<th>AC</th>
<th>PWVβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>31</td>
<td>2.70±0.79</td>
<td>24.97±7.83</td>
<td>2.07±0.54</td>
<td>3.10±0.43</td>
</tr>
<tr>
<td>10–19</td>
<td>97</td>
<td>4.13±1.62</td>
<td>44.42±15.36</td>
<td>1.43±0.49</td>
<td>4.03±0.82</td>
</tr>
<tr>
<td>20–29</td>
<td>793</td>
<td>5.37±1.53</td>
<td>61.71±18.54</td>
<td>1.15±0.37</td>
<td>4.76±0.66</td>
</tr>
<tr>
<td>30–39</td>
<td>1042</td>
<td>6.60±2.11</td>
<td>77.95±26.74</td>
<td>0.93±0.35</td>
<td>5.36±1.82</td>
</tr>
<tr>
<td>40–49</td>
<td>651</td>
<td>7.85±2.54</td>
<td>95.69±32.65</td>
<td>0.80±0.30</td>
<td>5.99±2.29</td>
</tr>
<tr>
<td>50–59</td>
<td>205</td>
<td>9.78±3.35</td>
<td>121.79±44.65</td>
<td>0.70±0.29</td>
<td>6.67±1.13</td>
</tr>
<tr>
<td>≥ 60</td>
<td>22</td>
<td>11.80±4.84</td>
<td>142.21±55.26</td>
<td>0.59±0.22</td>
<td>7.31±1.44</td>
</tr>
</tbody>
</table>
Right Carotid Artery in 4,812 subjects (1,971 Men and 2,841 Women) by Different Age Groups (X±S)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>n</th>
<th>β</th>
<th>Ep</th>
<th>AC</th>
<th>PWVβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>82</td>
<td>3.19±0.96</td>
<td>29.18±9.36</td>
<td>2.08±0.69</td>
<td>3.32±0.49</td>
</tr>
<tr>
<td>10–19</td>
<td>200</td>
<td>4.30±1.43</td>
<td>47.12±17.69</td>
<td>1.51±0.53</td>
<td>4.11±0.74</td>
</tr>
<tr>
<td>20–29</td>
<td>1525</td>
<td>5.73±1.94</td>
<td>68.04±22.93</td>
<td>1.14±0.40</td>
<td>4.99±1.32</td>
</tr>
<tr>
<td>30–39</td>
<td>1635</td>
<td>6.80±2.27</td>
<td>82.29±29.84</td>
<td>0.94±0.33</td>
<td>5.58±2.49</td>
</tr>
<tr>
<td>40–49</td>
<td>971</td>
<td>7.93±2.67</td>
<td>97.72±35.51</td>
<td>0.82±0.29</td>
<td>6.10±2.61</td>
</tr>
<tr>
<td>50–59</td>
<td>327</td>
<td>9.73±3.33</td>
<td>122.93±44.64</td>
<td>0.71±0.26</td>
<td>6.85±3.85</td>
</tr>
<tr>
<td>≥60</td>
<td>72</td>
<td>10.86±4.40</td>
<td>140.73±60.99</td>
<td>0.75±0.31</td>
<td>7.07±1.39</td>
</tr>
</tbody>
</table>

Right Carotid Artery in 1,971 Men by Different Age Groups (X±S)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>n</th>
<th>β</th>
<th>Ep</th>
<th>AC</th>
<th>PWVβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>51</td>
<td>3.23±0.99</td>
<td>29.29±9.22</td>
<td>2.13±0.71</td>
<td>3.32±0.48</td>
</tr>
<tr>
<td>10–19</td>
<td>103</td>
<td>4.45±1.40</td>
<td>48.71±17.16</td>
<td>1.49±0.53</td>
<td>4.12±0.64</td>
</tr>
<tr>
<td>20–29</td>
<td>732</td>
<td>5.74±2.08</td>
<td>70.42±24.35</td>
<td>1.15±0.37</td>
<td>5.07±1.77</td>
</tr>
<tr>
<td>30–39</td>
<td>593</td>
<td>6.77±2.24</td>
<td>85.67±30.06</td>
<td>0.96±0.31</td>
<td>5.88±3.93</td>
</tr>
<tr>
<td>40–49</td>
<td>320</td>
<td>8.23±2.93</td>
<td>104.17±38.74</td>
<td>0.83±0.30</td>
<td>6.34±3.22</td>
</tr>
<tr>
<td>50–59</td>
<td>122</td>
<td>9.38±3.49</td>
<td>121.82±47.91</td>
<td>0.76±0.30</td>
<td>7.13±6.16</td>
</tr>
<tr>
<td>≥60</td>
<td>50</td>
<td>10.60±4.38</td>
<td>137.82±59.22</td>
<td>0.82±0.33</td>
<td>7.00±1.41</td>
</tr>
</tbody>
</table>

Right Carotid Artery in 2,841 Women by Different Age Groups (X±S)

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>n</th>
<th>β</th>
<th>Ep</th>
<th>AC</th>
<th>PWVβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>31</td>
<td>3.13±0.92</td>
<td>29.00±9.73</td>
<td>2.01±0.66</td>
<td>3.51±0.51</td>
</tr>
<tr>
<td>10–19</td>
<td>97</td>
<td>4.14±1.44</td>
<td>45.43±18.17</td>
<td>1.53±0.53</td>
<td>4.09±0.83</td>
</tr>
<tr>
<td>20–29</td>
<td>793</td>
<td>5.73±1.80</td>
<td>65.84±21.30</td>
<td>1.13±0.41</td>
<td>4.92±0.68</td>
</tr>
<tr>
<td>30–39</td>
<td>1042</td>
<td>6.82±2.29</td>
<td>80.37±29.56</td>
<td>0.93±0.33</td>
<td>5.40±0.92</td>
</tr>
<tr>
<td>40–49</td>
<td>651</td>
<td>7.79±2.53</td>
<td>94.55±33.38</td>
<td>0.82±0.28</td>
<td>5.99±2.24</td>
</tr>
<tr>
<td>50–59</td>
<td>205</td>
<td>9.94±3.23</td>
<td>123.59±42.68</td>
<td>0.68±0.23</td>
<td>6.69±1.06</td>
</tr>
<tr>
<td>≥60</td>
<td>22</td>
<td>11.47±4.50</td>
<td>147.34±65.78</td>
<td>0.61±0.19</td>
<td>7.23±1.36</td>
</tr>
</tbody>
</table>
Acknowledgements

Li Zhi’an,Yong Qiang
Beijing Anzhen Hospital Affiliated to the Capital Medical University

Guo Ruijun
Beijing Chaoyang Hospital Affiliated to the Capital Medical University

Tang Jie,Wen Chaoyang
People’s Liberation Army General Hospital

Wang Jianhua
The PLA General Hospital of Beijing Military Region

Wang Jinrui
Beijing University Third Hospital

Zhou Wanjun,Gao Qiwang
Beijing Chinese Medicine hospital of Changping District

Gu Lili
Beijing Huilongguan Township Hospital of Changping District

Liu Mingyi,Zhang Li
The Center Hospital of Shijiazhuang City

Wang Yicheng
Hebei North University First Affiliated Hospital

Zhang Yaqin
The Second Hospital of Qinhuangdao City

Zhao Zhen
Hebei University Affiliated Hospital

Ma Xiuying
People’s Hospital of Fengrun District

Liu Qing
Handan Mining Group General Hospital

Zhao Zengzhu,Zhang Guohong
The First Hospital in Xingtai City

Yang Xiaoying
The First Affiliated Hospital of Jilin University

Lv Xianbo
The Northeast Normal University Hospital

Wang Zhifa,Yang Jingying
The Ordos Central Hospital

Shi Baifang
The First Hospital of Hohhot

Wang Xuefeng
The Center Hospital of Wulanchabu City

Wu Yongli
People’s Hospital Affiliated to the Inner Mongolia Medical College

Su Nelin,Liu Xiaoping
The Inner Mongolia Autonomous Region Hospital

Hasi
The First Affiliated Hospital of the Inner Mongolia Medical College

Zheng Rongqin
The Third Affiliated Hospital of Zhongshan University

Liang Qiaorong
Chinese Medicine Hospital of Foshan City Affiliated to Guangzhou University of Traditional Chinese Medicine

Fu Jianqun
The Second People’s Hospital of Nanhai District in Foshan City

Li Hengqing
Guangzhou Red Cross Hospital

Liu Xin
Chinese People’s Liberation Army Hospital No. 88

Zheng Mubai
People’s Hospital of Dezhou City

Li Xiaoyin
The Third People’s Hospital of Liaocheng City

Zheng Li
The Third People’s Hospital Affiliated to the Medical School of Shanghai Jiaotong Univ.

Chen Yue
Shanghai Huadong Hospital

Ji Fengqun
Science City Hospital of Mianyang, Sichuan Province

Gu Peng
The Affiliated Hospital of North Sichuan Medical College

Yang Jian
Ruikang Hospital Affiliated to Guangxi College of Traditional Chinese Medicine

Yu Lan
People’s Hospital in Xinjiang Autonomous Region

Chen Hongjian
The Maternal and Child Health Center of Gejiu City, Yunnan Province

Xue Li
The Fourth Affiliated Hospital of Harbin Medical University

Zhang Ying
The First Hospital of Changsha City